- $\frac{\mu_{0}}{4 \pi}=10^{-7} \mathrm{N} \cdot \mathrm{s}^{2} / \mathrm{C}^{2}$.
- $\mu_0$ is the magnetic permeability of vacuum (universal constant). $\mu_{0} =4 \pi \times 10^{-7} \mathrm{N} \cdot \mathrm{s}^{2} / \mathrm{C}^{2}=4 \pi \times 10^{-7} \mathrm{Wb} \mathrm{A} \cdot \mathrm{m}=4 \pi \times 10^{-7} \mathrm{T} \cdot \mathrm{m} / \mathrm{A}$
- one can prove that $\vec F_1=-\vec F_2$ (Newton’s third law)
Recall cross product of vectors![[Pasted image 20240306172152.png]]
#Magnetic Force Between Circuits
Force acting on circuit 2 caused by circuit 1
$$ \mathbf{F}_{2}=\frac{\mu_{0}}{4 \pi} I_{1} I_{2} \oint_{1} \oint_{2} \frac{d \vec{l}_{2} \times\left[d \vec{l}_{1} \times\left(\vec{r}_{2}-\vec{r}_{1}\right)\right]}{\left|\vec{r}_{2}-\vec{r}_{1}\right|^{3}} $$ ![[Pasted image 20240306172233.png]] $\oint$ is the integral along the circuit (closed loop); $d \vec{l}$ is an infinitesimal length of wire, with direction given by the current density. The previous expression simplifies when applied to two long parallel wires. The force per length of wire $L$ is simply $$ \frac{F}{L}=\frac{\mu_{0} I I^{\prime}}{2 \pi r} $$