Properties
- minus sign for convenience
- Since the electric field satisfies the superposition principle, and being nabla a linear operator, the electric potential fulfills superposition.
- the SI unit is one volt (1V) in honor of Alessandro Volta.
- Alternative SI unit for electric field: volt per meter $1 \mathrm{V} / \mathrm{m}=1 \mathrm{N} / \mathrm{C}$
- In circuits, a difference in potential from one point to another is often called voltage.
#Calculating Electric Potentials
The potential of a point charge located at $\vec{r}’$ is simply
$$ V(\vec{r})=\frac{1}{4 \pi \epsilon_{0}} \frac{q_{1}}{|\vec{r}-\vec{r}'|} $$ Invoking the superposition principle, any potential can be calculated as sum (integral) of contributions. $$ V(\vec{r})= \frac{1}{4 \pi \epsilon_{0}} \sum_{i=1}^{N} \frac{q_{i}}{|\vec{r}-\vec{r}_{i}|}+\frac{1}{4 \pi \epsilon_{0}} \int_{V} \frac{\rho\left(\vec{r}^{\prime}\right)}{|\vec{r}-\vec{r}^{\prime}|} d V^{\prime}\\ +\frac{1}{4 \pi \epsilon_{0}} \int_{S} \frac{\sigma\left(\vec{r}^{\prime}\right)}{|\vec{r}-\vec{r}^{\prime}|} d S^{\prime} $$#Simple Cases
Charged cylinder | Charged ring |
---|---|
![[Pasted image 20240306143852.png]] | ![[Pasted image 20240306143859.png]] |
$V=\frac{\lambda}{2 \pi \epsilon_{0}} \ln \frac{R}{r}$ | $V=\frac{1}{4 \pi \epsilon_{0}} \frac{Q}{\sqrt{x^{2}+a^{2}}}$ |
Read and understand the derivation by yourself: Sears & Zemansky examples 23.10, 23.11
#Equipotential Lines
A equipotential surface is an imaginary surface such that the electric potential $V$ is constant over it.
Examples ![[Pasted image 20240306143941.png]]
Properties:
- Field lines and equipotential surfaces are always perpendicular to each other.
- $E$ doesn’t have to be constant over an equipotential surface.
- The larger the electric field, the closer the equipotential surfaces are.
- The surface of a conductor in equilibrium is always an equipotential surface. Actually, all the volume is equipotential.
- This follows from the fact that the electric field is always perpendicular to the surface of a conductor.