Transpose Matrix - Yousef's Notes
Transpose Matrix

Transpose Matrix

Transpose of a matrix is a new matrix rotating the rows of the given matrix. Matrix $$ A = \begin{bmatrix} 1 & 2 & 4 \\ 8 & 2 & 1 \\ 7 & 3 & 0 \\ 2 & 1 & 2 \end{bmatrix} $$ then transpose of this matrix is $$ A^T =\begin{bmatrix} 1 & 8 & 7 & 2 \\ 2 & 2 & 3 & 1 \\ 4 & 1 & 0 & 2 \end{bmatrix} $$

#Properties

$$ (A^T)^T = A $$ $$ (A + B)^T = A^T + B^T $$ $$ (A - B)^T = A^T - B^T $$ $$ (kA)^T = kA^T $$ $$ (AB)^T = B^TA^T $$ $$ (A^T)^{-1} = (A^{-1})^T $$