Orthonormal Vectors - Yousef's Notes
Orthonormal Vectors

Orthonormal Vectors

  • Orthogonal vectors: $\mathbf{q}_i^T \mathbf{q}_j = 0$ if $i \neq j$
  • Orthonormal vectors:
$$ \mathbf{q}_i^T \mathbf{q}_j = \begin{cases} 0 & \text{if } i \neq j \text{ (orthogonal vectors)} \\ 1 & \text{if } i = j \text{ (unit vectors)} \end{cases} $$ Example: $\begin{bmatrix} 3 \ 0 \end{bmatrix}, \begin{bmatrix} 0 \ 2 \end{bmatrix}$ are orthogonal but not orthonormal: $$ \mathbf{q}_1^T \mathbf{q}_2 = \begin{bmatrix} 3 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 0 + 0 = 0 $$ $$ \mathbf{q}_1^T \mathbf{q}_1 = \begin{bmatrix} 3 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \end{bmatrix} = 9 \neq 1 \quad \text{and} \quad \mathbf{q}_2^T \mathbf{q}_2 = \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 2 \end{bmatrix} = 4 \neq 1 $$