- Matrix is singular when $det(A) = 0$
- Notation: $det(A) = \abs{A}$
- Matrix is not singular or invertible when $det(A) \neq 0$
#Determinant Diagonal Method
Only works for matrices lower than 4x4.
#Determinant Properties
- Det I = 1
- Exchange Rows reverse sign: det P = 1 even or -1 odd
- a)
b)
$$
\begin{vmatrix}
a + a' & b + b' \\
c & d
\end{vmatrix}
=
\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
+
\begin{vmatrix}
a' & b' \\
c & d
\end{vmatrix}
$$
3a and 3. b means linear each row
- If 2 rows are equal then det = 0 Exchange those rows equal so you have the same matrix. Determinant should change sign by property 2.
- Subtract m times row i from row k then determinant doesn’t change:
- Rows of zeros then Det A = 0
- Determinant of Upper Triangular Matrix then determinant is the product of the elements of diagonal
- $\text{det } A = 0$ when $A$ is singular $\rightarrow$ row of zeros $\text{det } A \neq 0$ when $A$ is invertible
- Det (AB) = (Det A)(Det B)
- $\text{det } A^T = \text{det } A$
#Different Ways to Calculate Determinants
Let $A = \begin{bmatrix} 2 & 4 & 4 \ 1 & 2 & 1 \ 3 & -2 & 5 \end{bmatrix}$ then solve $\det A = \begin{vmatrix} 2 & 4 & 4 \ 1 & 2 & 1 \ 3 & -2 & 5 \end{vmatrix}$
- Using Diagonal formula
- Using Cofactors of Row 1
-
$\text{Det } A = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$
-
-
- Using Cofactors of Column 3
- $\text{Det } A = a_{13}C_{13} + a_{23}C_{23} + a_{33}C_{33}$
#Applications
Hill Cipher